III VMS Software

C Run-Time Library (C RTL)
Release Notes

Publication Date: November 2024

Software Version: ECO patch kit RTL V9.0

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

C Run-Time Library (C RTL) Release Notes

C Run-Time Library (C RTL) Release Notes

III VMS Software

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium, and TA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

C Run-Time Library (C RTL) Release Notes

Table of Contents

1
2
3
4
5
6
7

. C RTL Changes in ECO Patch Kit RTL V9.0

. New Functions
. Updates to Functions

. Documentation Update

. Bug Fixescccccuuuue.
. New Header Files
. Known Limitation

C Run-Time Library (C RTL) Release Notes

1. C RTL Changes in ECO Patch Kit RTL V9.0

The ECO Patch Kit RTL V9.0 provides additional C Run-Time Library (RTL) functions, updates to
some functions, bug fixes, new header files, and identifies known issues and limitations. This ECO kit
is cumulative and includes the changes from all previous versions of C RTL ECO.

This kit may be applied to the following VSI OpenVMS versions:
e VSI OpenVMS Alpha Versions 8.4-2L1 and 8.4-2L.2
e VSI OpenVMS IA-64 Versions 8.4-211 and 8.4-2L.3

All functionality included in this kit is also available on VSI OpenVMS x86-64 V9.2-3.

Note

If you develop an application on a system with the RTL C99 or any later kit installed and intend
it to be run on a system without those kits, you must compile your application with the switch
/DEFINE=(__CRTL_VER_OVERRIDE=80400000).

Possible errors when compiling applications

It is possible that applications may incur compilation errors if the applications include definitions that
conflict with the definitions now provided in the system header files. For example, if an application
contains a definition of int64_t that differs from the definition included in STDINT.H, the compiler
generates a %CC-E-NOLINKAGE error.

One solution is to remove the application-specific definition if the system-provided definition
provides the proper functionality. To diagnose such problems, compile the application using
/LIST/SHOW=INCLUDE and then examine the listing file.

There are different ways to resolve such problems:

e Remove the application-specific definition if the system-provided definition provides the proper
functionality.

e Undefine the system-provided definition before making the application-specific definition. For
example:

#i fdef alloca

#undefine all oca

#endi f

<application-specific definition of alloca>

e Guard the application-specific definition. For example:

#i fndef all oca
<application-specific definition of alloca>
#endi f

Manipulating Variable Argument Lists on x86-64

The implementation of variable argument lists on x86-64 is different than on Integrity and Alpha and
may require source code changes, depending on how the lists are used.

C Run-Time Library (C RTL) Release Notes

On Integrity and Alpha, it is possible to copy one variable argument list to another using an
assignment operator. For example:

va2 = val

On x86-64, this does not work. Use the va_copy function for this purpose. For example:

va_copy (va2, val)

On Integrity and Alpha, it is also possible to reference specific entries in the variable argument list
using the subscript notation. For example:

int arg2 = va[1]

On x86-64, this does not work. Use the va_ar g function for this purpose. For example:
int arg2 = va_arg(va,int)

Online Help

The OpenVMS CRTL Help Library has been updated with the changes from several previously
released ECO RTL patch kits, including the ECO patch kit RTL V9.0.

2. New Functions

This section describes the new C RTL functions introduced in the current ECO patch kit as well as the
previous ECO patch kits.

alloca

Format

#i ncl ude <al | oca. h>
void *all oca (unsigned int size);

Description

The al | oca function allocates size bytes from the stack frame of the caller. The memory is
automatically freed when the function that calls al | oca returns to its caller. See VSI C User's Guide
for OpenVMS Systems for the ALLOCA macro.

Returns

The al | oca function returns a pointer to the allocated memory.

mempcpy

Format

#i ncl ude <string. h>
voi d *menpcpy (void *dest, const void *source, size_ t size);

Function Variants

The menpcpy function has variants named _nmenpcpy 32 and _nmenpcpy64 for use with 32-bit
and 64-bit pointer sizes, respectively.

https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/

C Run-Time Library (C RTL) Release Notes

Description

The menpcpy function, similar to the mentpy function, copies size bytes from the object pointed to
by source to the object pointed to by dest; it does not check for the overflow of the receiving memory
area (dest). Instead of returning the value of dest, menpcpy returns a pointer to the byte following the
last written byte.

Returns

The menpcpy function returns a pointer to the byte following the last written byte.

getline, getwline, getdelim, getwdelim

Format

#i ncl ude <stdio. h>

ssize t getline (char **lineptr, size t *n, FILE *stream;

ssize t getwine (wchar_t **lineptr, size t *n, FILE *stream;

ssize t getdelim (char **lineptr, size t *n, int delimter, FILE *stream;
ssize t getwdelim (wchar_t **lineptr, size t *n, wint_t delimter,

FI LE *stream;

Function Variants

The get | i ne function has variants named _get | i ne32 and _get | i ne64 for use with 32-bit
and 64-bit pointer sizes, respectively.

The get W i ne function has variants named _get w i ne32 and _get W i ne64 for use with 32-
bit and 64-bit pointer sizes, respectively.

The get del i mfunction has variants named _get del i 82 and _get del i n64 for use with 32-
bit and 64-bit pointer sizes, respectively.

The get wdel i mfunction has variants named _get wdel i 82 and _get wdel i n64 for use with
32-bit and 64-bit pointer sizes, respectively.

Description

The get | i ne and get W i ne functions read an entire line from stream, storing the address of the
buffer, which contains the text into */ineptr. The buffer is null-terminated and includes the newline
character if one was found.

If *lineptr is NULL, then get | i ne will allocate a buffer for storing the line, which should be freed
by the user program. (In this case, the value in *x is ignored.)

Alternatively, before calling get | i ne, */ineptr can contain a pointer to a mal | oc allocated buffer
*n bytes in size. If the buffer is not large enough to hold the line, get | i ne resizes it with r eal | oc,
updating */ineptr and *n as necessary.

The get del i mand get wdel i mfunctions work like get | i ne and get W i ne, respectively,
except that a line delimiter other than newline can be specified as the delimiter argument. As with
getline and get W i ne a delimiter character is not added if one was not present in the input
before end of file was reached.

Returns

C Run-Time Library (C RTL) Release Notes

On success, all functions return the number of characters read, including the delimiter character, but
not including the terminating null byte.

qsort_r

Format

#i nclude <stdlib. h>

void qsort_r (void *base, size_t nnenb, size t size,

int (*conmpar)(const void *, const void *, void *), void *arg)

Function Variants

The gsort _r function has variants named _gsort _r 32 and _qsort _r 64 for use with 32-bit
and 64-bit pointer sizes, respectively.

Description

The gsort _r function is the reentrant version of qsor t . See the gsor t description in the VSI C
User's Guide for OpenVMS Systems. qsort _r is identical to qsort except that the comparison
function compar takes a third argument. A pointer is passed to the comparison function via arg.

Returns

The gsort _r function returns no value.

mkostemp

Format

#i ncl ude <stdlib. h>
int nkostenp (char *tenplate, int flags)

Description

The nkost enp function is equivalent to mkst enp, with the difference that flags as for open may be
specified in flags.

The nkost enp function replaces the six trailing Xs of the string pointed to by template with a
unique set of characters, and returns a file descriptor for the file opened using the flags specified in

flags.

The string pointed to by template should look like a filename with six trailing X's. The nkost enp
function replaces each X with a character from the portable filename character set, making sure not to
duplicate an existing filename.

If the string pointed to by template does not contain six trailing Xs, -1 is returned.
Returns
On success, the mkost enp function returns a file descriptor for the open file.

-1 indicates an error. The string pointed to by template does not contain six trailing Xs.
posix_memalign

Format

https://vmssoftware.com/docs/VSI_C_USER.pdf
https://vmssoftware.com/docs/VSI_C_USER.pdf

C Run-Time Library (C RTL) Release Notes

#i ncl ude <stdlib. h>
int posix_nemalign (void ** nenptr, size_t alignnment, size_t size)

Function Variants

The posi x_nmemal i gn function has variants named _posi Xx_nmemnal i gn32 and
_posi x_memnal i gn64 for use with 32-bit and 64-bit pointer sizes, respectively.

Description

The posi x_memal i gn function allocates Si ze bytes of memory such that the allocation's base
address is an exact multiple of al i gnnent , and returns the allocation in the value pointed to by
menptr.

The requested alignment must be a power of 2 at least as large as sizeof(void *). Memory that is
allocated via posi X_memal i gn can be used as an argument in subsequent calls to r eal | oc and
free.

Note

The allocation returned by r eal | oc is not guaranteed to preserve the original alignment

Returns

The posi x_memal i gn function returns 0 if successful, and an error value otherwise.

aligned_alloc

Format

#i ncl ude<stdl i b. h>
void * aligned_alloc (size_t alignnent, size_t size)

Function Variants

The al i gned_al | oc function has variants named _al i gned_al | 0oc32 and
_al i gned_al | oc64 for use with 32-bit and 64-bit pointer sizes, respectively.

Description

The al i gned_al | oc function allocates space for an object whose alignment is specified by

al i gnnent , whose size is specified by Si ze, and whose value is indeterminate. Memory that is
allocated via al i gned_al | oc can be used as an argument in subsequent calls to r eal | oc and
free.

Note

The allocation returned by r eal | oc is not guaranteed to preserve the original alignment.

Returns

The al i gned_al | oc function returns a pointer to the allocated memory or NULL if the memory
can't be allocated.

C Run-Time Library (C RTL) Release Notes

asprintf, vasprintf

Format

int asprintf (char **__sp, const char * _format, ...);

int vasprintf (char ** _ sp, const char * _format, _ va_list__ _ arg);
Description

The functions aspri nt f and vaspri ntf are mostly similarto spri ntf and vspri ntf, except
that they allocate a string large enough to hold the output, including the terminating null byte (\ 0),
and return a pointer to it via the first argument. This pointer should be passed to f r ee to release the
allocated storage when it is no longer needed.

3. Updates to Functions

This section lists the updates to the C RTL functions introduced in the current ECO patch kit as well
as the previous ECO patch kits.

e Thefcntl function now supports the F DUPFD CLOEXEC command.
e The f dopen function now ignores all flags except r, w, a, and +.
e The pi pe function now supports the O CLOEXEC flag.

e The open, f open, and popen functions have been updated to support close-on-exec flag. The
open function now supports the O CLOEXEC flag. The f open and popen functions now

[TP% L]

support “e” in the access mode.

e Thefcntl function has been updated to support the O NONBLOCK flag in the F_ SETFL and
F_GETFL modes.

e The set buf and set vbuf functions have been updated to take 64-bit arguments.

However, the buffer parameter must contain a 32-bit memory buffer, therefore when compiling
the application in 64-bit mode with / PO NTER=64 or / PO NTER=LONG, _nal | 0c32 must be
used to allocate the buffer.

e Forgetopt and| ocal econv, 64-bit function variants (_get opt 64 and | ocal econv64)
have been added.

e The addrinfo and passwd structures have been updated to work better in 64-bit mode with the
get addri nf o, f reeaddri nf o, get pwnam get pwui d, and get pwent functions.

Previously, to use the 64-bit versions of addrinfo and passwd, it was necessary to use
__addreinfo64 and __ passwd64 structures because addrinfo and passwd were always 32-bit.

Now, when compiling in 64-bit mode with /POINTER=64 or /POINTER=LONG, addrinfo and
passwd structures are correctly compiled as the 64-bit versions, addreinfo64 and __ passwd64.
This behavior is similar to other 64-bit structures.

To retain the previous 32-bit behavior of addrinfo and passwd when compiling in 64-bit

mode, you can either replace the addrinfo and passwd structures with their 32-bit versions,
__addreinfo32 and __ passwd32, or revert to the previous definitions of these structures by
compiling your application with the /DEFINE=(CRTL VER OVERRIDE = 80400000) switch.

C Run-Time Library (C RTL) Release Notes

The pol | function has been updated to support pipes, mailboxes, TTYs, and files.
The arguments to f wr i t e are now checked to conform to the POSIX standard.

The arguments to the exec* functions are checked to avoid access violation errors when the
ar gv parameter is NULL.

The execv, execve, and execvp functions have been enhanced to support 64-bit pointers for
the ar gv argument.

O _NONBLOCK mode can be enabled or disabled for mailboxes and channels.

The get t i mfunction now supports CLOCK_MONOTONIC,
CLOCK_MONOTONIC_COARSE, and CLOCL_MONOTONIC _RAW.

Calling the i net _anon function with 64-bit arguments no longer result in an ACCVIO error.
Performance of the set | ocal e function has been improved.

The functionswritev,pwite,wite,andfwit e are now atomic.

A 64-bit version of execl e has been added.

The i conv function now accepts 64-bit pointers.

If the r eal pat h function is called with the r esol ved_namne parameter equal to null, the
CRTL will allocate a buffer to hold the generated pathname. The user will be responsible for
freeing the buffer by calling the f r ee function.

If the get cwd function is called with the buf parameter equal to null and the size parameter
equal to 0 (zero), the CRTL will allocate a buffer to hold the output string. The user will be
responsible for freeing the buffer by calling the f r ee function.

4. Bug Fixes

This section lists the C RTL issues that were fixed in the current ECO patch kit as well as the previous
ECO patch kits.

Calling the f sync function with the DECC$STDIO CTX_ EOL feature enabled now correctly
resets the file buffer.

The def i ned preprocessor directive, that was missing previously, has been added to the
STDLIB.H header.

The i conv_open function now returns more accurate error codes.

The nkost enp function now automatically sets the O_EXCL, O_CREAT, or O_RDWR flags when
called.

The sem _open function no longer returns an ACCVIO error when called with a 64-bit string
address.

Multinet v5.6 no longer returns the ACCVIO error after calling the TCPIPSIOCTL routine.

The decc$gt _dbl _nan and decc$gs_fl oat _i nfi ni ty constants now provide correct
values when / EXTERN_MODEL is used.

10

C Run-Time Library (C RTL) Release Notes

Applying the pol | function to a file with DEVSM_TRM no longer returns an error.

The open function now works properly when opening / dev/ nul | and/ dev/ tty when
DECCS$POSIX _COMPLIANT PATHNAMES is defined as 1, 2, or 3.

Multiple processes or multiple threads attempting to open a file for append at the same time now
correctly open the same file.

If the f open function is called with the O TRUNC flag and the file specification includes a file
version number, the function truncates the file when open rather than returns an error.

The shnget function can be called a second time with the same key value and a size of 0.

The st at function now returns the correct value for st _bl ocks when the file allocation value
is greater than 65536 blocks.

The f pcl assi fy syntax has been fixed in MATH.H to compile classification macros correctly.
The st r pt i me function now works properly with the %Ow conversion specifier.

The unl i nk function now works properly when called with a POSIX path but without defining
the required DECCS feature logical or without specifying the K UNIX argument.

The nanosl eep function is now reentrant.

MATHSFP_CLASS <n>X functions, added as part of the C99 work, have been added to
STARLET.OLB.

f open and open correctly create a new version of a file, rather than overwriting the existing one,
if the file is opened for trunc (O TRUNC) and the file specification contains a semicolon but no
version number.

Writing 0 bytes to a mailbox device now sends an EOF to the mailbox rather than returning an
error.

Idle Samba processes no longer execute excessive buffered 1/0s per second.
Various processes, including NTP, no longer go into a compute intensive state.

Specifying non-blocking I/O on sockets no longer results in an I/O error when transferring buffers
larger than 62696 bytes.

The function execl e no longer causes an ACCVIO when called incorrectly.
Buffer overflows have been fixed in execl , execl e, and execl p.

The r eal pat h function no longer returns an error for non-privileged processes that do not have
read access to [000000] when DECC$POSIX COMPLIANT PATHNAMES is defined to 1.

The access function no longer returns an error when the f i | e_spec parameter is set to either
/dev/null or/dev/tty.

The exec* functions no longer leak resources if the call results in an SS§ EXQUOTA error.

Thewri t e and pwri t e functions now return a zero if the length parameter is set to zero. This
fixes a problem that was introduced in C RTL ECO V6, where setting the length parameter to zero
would result in an error.

11

C Run-Time Library (C RTL) Release Notes

e The get nane function no longer returns an invalid result in a child process that was created by a
parent process using the exec* functions.

e A buffer overflow has been fixed in cat open.

e CRTL ECO V3 introduced a problem in the wai t 3 and wai t 4 functions that could potentially
corrupt memory beyond the rusage structure of an application. This problem has been fixed in
ECO V8.

e The LIBRTL function LI BECVT_DX_DX no longer returns an incorrect value after receiving the
literal O as an input.

5. New Header Files

This section lists the header files introduced in the current ECO patch kit as well as the previous ECO
patch kits.

ALLOCA.H.
PARAMS.H
TERMIOS.H

The macro va_copy has been added to STDARG.H for Alpha and IA64.

#defi ne va_copy(cp, ap) ((cp) = (ap))

6. Known Limitation

On Integrity, math routines that perform comparisons, with one or both of the parameters being a long
double NaN, do not compare correctly.

7. Documentation Update

The sem _open function returns a 64-bit pointer to a semaphore, so you must allocate a 64-bit pointer
to receive the returned semaphore pointer. One way to do this is as follows:

#pragma __requi red_poi nter_size __save
#pragna __required_pointer_size 64

semt *mysenp = NULL;

#pragnma __required_pointer_size _ restore
nysenp = semopen (...);

The action routine called by DECC$TO_VMS takes an optional third parameter which is a void
pointer to an argument that is passed to the action routine. This optional parameter to the action
routine is passed as an optional, final argument to DECC$TO_VMS. The format for DECC$TO_VMS
is:

#i ncl ude <unixlib. h>
int decc$to_vns (const char *unix_style_filespec,
int (*action_routine) (char *QpenVMS_style filespec,
int type of file), int allowwld, int no directory, ...);

For example:

12

C Run-Time Library (C RTL) Release Notes

int action_rtn (char* file, int type, void* arg)
int result = decc$to_vms("file.nane", action_rtn, 0, 0, 1);

The action routine called by DECC$SFROM_VMS takes an optional second parameter which is a

void pointer to an argument that is passed to the action routine. This optional parameter to the action

routine is passed as an optional, final argument to DECC$FROM_VMS. The format for DECC
$FROM_VMS is:

#i ncl ude <uni xlib. h>

int decc$fromvns (const char *vns_fil espec,
int (*action_routine) (char *UNI X style filespec),
int wild_flag, ...);

For example:

int action_rtn (char* file, void* arg)
int result = decc$fromvns("file.name", action_rtn, 0, 1);

Compiling a program with either DECC$TO_VMS or DECC$FROM_VMS will result in a
PTRMISMATCH warning on the line containing the call. You can eliminate the warning for the
entire module by using the switch / WARNI NG=DI SABLE=PTRM SMATCH or you can eliminate
the warning for just the call by using #pr agna nmessage di sabl e (ptrm smat ch). For
example:

#pragma nmessage save
#pragm nessage di sable (ptrm smatch)

int result = decc$to vns("file.name", action_rtn, 0, 0, 1);
#pragma nmessage restore

13

	C Run-Time Library (C RTL)
	Table of Contents
	1. C RTL Changes in ECO Patch Kit RTL V9.0
	2. New Functions
	3. Updates to Functions
	4. Bug Fixes
	5. New Header Files
	6. Known Limitation
	7. Documentation Update

