

ELSTRU INSTALLATION AND TESTING

For

Windows XP Windows 7 Windows 8

manual revision : 1.0

Software version 1.1

Contents

1. Installation	3
2. Testing the installation	5
3. Obtain a license	16
4. Asking questions, making requests and reporting problems	18

1.Installation

Currently ELSTRU for Microsoft-Windows runs both on 32-bit as on 64 bit versions of XP, 7 & 8. The Installation package for Elstru can be downloaded as an install-package from our FTP-server : <u>ftp://nchrem.tnw.tudelft.nl/elstru/ELSTRU-1-EN-W7EX86.msi</u>

Copy this file to the machine where you want to install. Do not use IE, because a bug in IE makes it fail to download this file. Firefox is better suited for the task. After downloading "*double click*" on the ELSTRU-1-EN-W7EX86.msi file.

Click on "Next".

Allow for installation as "admin" user. Finally you should get get following window

Click on "Finsish" to end the installation. Congratulations you installed your version of Elstru.

<u>2. Testing the installation</u>

Select from the "Start"-menu: Start->Elstru-wxatoms.

Windows Live Mail	-		All and a start of
🚢 Windows Live Messenger		and the second	16 h Decomo
Windows Live Movie Maker			State of the
Windows Live Photo Gallery			上的 编版程
🧐 Windows Media Center		joukj	A A HA
🖸 Windows Media Player		Documento	
I Windows Update		Documents	1.1.1.1.1
A XPS Viewer		Pictures	111111
Accessories			1997
AVG Free 9.0		Music	V ANLE
U Cygwin			- 63.AF.R
Cygwin-X	-	Computer	BERNER
Ja Elstru			
Get License Info		Control Panel	在 把13.33
Wxatoms			
wxgreed		Devices and Printers	
Cil-Zille Conver	_	Default Deserves	
Games		Delauterrograms	11134
Maintenance		Help and Support	1. 1 A 1
	121		11 1 20
4 Back			「肝を必っ
searcn programs and files	2	Shut down	115 12
L			1121 348

The following window should appear.

wха	toms (o	n LOCAL:.VAL	ETA)					-08
<u>G</u> eneral	<u>O</u> ptions	<u>File Actions</u>						
wxatoms	Input Box—							
Na	me	x	у	z	В	000	Multip	
	Next	Previous	Save Dele	te atom				

wxatoms is the atomic parameter editing program for Elstru. Select from the top-menu : File->Openfile In the browser window go to c:\Program Files\elstru\demo

. wxatoms General Options File Act	tions				
wxstoms Atom-file selection	er → Local Disk (C:) → Program Files	(x86) → Elstru → demo			✓ 4 Search demo
Organize New fold	ler				8≡ ▼ 🗍 (
★ Favorites	Name	Date modified	Туре	Size	
🧮 Desktop	30jun95_016.dat	18-5-2011 16:55	DAT File	2,049 KB	
🐌 Downloads	atom.dat	5-10-2012 17:53	DAT File	3 KB	
🖳 Recent Places	📄 flat_30jun95.dat	8-6-2011 17:22	DAT File	2,049 KB	
□ Libraries ■ □ Documents □ Music □ Pictures □ Videos					
I툎 Computer 실 Local Disk (C:)					
👸 CD Drive (D:) Virt 🔻					
File n	aame: atom.dat				

Select the file atom.dat and click on "Open". The following should be visible:

et
et
et
et
et
ot

For the demonstration everything is filled in correctly. By selecting "*general->exit*" from the topmenu you can leave the program

Name x y z B occ Multip Ce1 1.33333 Exce 1.66666 Fixee 1.00000 Fixee 0.06188 Wat 1.00000 Fixee 3 Ce2 1.81408 Wat 1.00000 Fixee 0.06143 Wat 1.00000 Fixee 3 Ce1 1.29054 Wat 1.00000 Fixee 0.63322 Wat 1.00000 Fixee 3 Cu2 1.45361 Wat 1.00000 Fixee 1.00000 Fixee 3 P1 1.17820 Wat 1.00000 Fixee 0.63556 Wat 1.00000 Fixee 3 P2 1.00000 Fixee 1.00000 Fixee 0.63556 Wat 1.00000 Fixee 3 P2 1.00000 Fixee 1.00000 Fixee 1.00000 Fixee 6 P3 1.316815 Wat 1.78375 Vat 1.000000 Fixee 6 <	wxatoms eneral Options	File Actions						
Ce1 1.333333 Treet 1.666666 Fixed 1.000001 Fixed 0.06188* Var 1.000001 Fixed 3 Ce2 1.81408 Var 1.000001 Fixed 1.000001 Fixed 0.06188* Var 1.000001 Fixed 3 Cu1 1.29054* Var 1.000001 Fixed 1.000001 Fixed 0.63352 Var 1.000001 Fixed 3 Cu2 1.453615 Var 1.000001 Fixed 1.000001 Fixed 0.626561 Var 1.000001 Fixed 3 P1 1.17820 Var 1.000001 Fixed 1.000001 Fixed 3 1.000001 Fixed 3 P2 1.000001 Fixed 1.000001 Fixed 1.000001 Fixed 3 Cu5 1.381155 Var 1.641461 Var 1.000001 Fixed 1.000001 Fixed 6 P3 1.316815 Var 1.83019 Var 1.000001 Fixed 0.43728 Var 1.0000001 Fixed 6	Name	x	у	z	В	occ	Multip	
Ce2 1.81408; Var 1.00000(Fixed 0.06143(Var 1.00000(Fixed 3 Cu1 1.29054; Var 1.00000(Fixed 0.63352; Var 1.00000(Fixed 3 Cu2 1.45361; Var 1.00000(Fixed 1.00000(Fixed 1.00000(Fixed 3 P1 1.17820; Var 1.00000(Fixed 1.00000(Fixed 1.00000(Fixed 3 P2 1.00000(Fixed 1.00000(Fixed 0.62656; Var 1.00000(Fixed 3 Cu5 1.38115; Var 1.17837; Var 1. watoms normal end 566; Var 1.00000(Fixed 6 P3 1.31618; Var 1.88116; Var 1.88116; Var 1.00000(Fixed 0.43728; Var 1.00000(Fixed 6 Cu8 1.00000(Fixed 1.00000(Fixed 0.43728; Var 1.00000(Fixed 1	Ce1	1.333333 Fixed	1.666666 Fixed	1.000000 Fixe	d 0.061884 Var	1.000000	ixed 2	Sele
Cu1 1.29054! Wat 1.00000(Fixed 0.633522 Wat 1.00000(Fixed 3 Cu2 1.45361! Wat 1.00000(Fixed 4.10140! Wat 1.00000(Fixed 3 P1 1.17820! Wat 1.00000(Fixed 0.62656! Wat 1.00000(Fixed 3 P2 1.00000(Fixed 1.64146! Wat 1.00000(Fixed 1.00000(Fixed 3 Cu5 1.38115! Wat 1.17837! Wat 1.1 watoms normal end Sat 1.00000(Fixed 6 P3 1.31681! Wat 1.83019; Wat 1.00000(Fixed 0.08106! Wat 1.00000(Fixed 6 Cu7 1.52025(Wat 1.88116! Wat 1.00000(Fixed 0.43728! Wat 1.00000(Fixed 1 Cu8 1.00000(Fixed 1.00000(Fixed 0.43728! Wat 1.00000(Fixed 1	Ce2	1.814083 Var	1.000000 Fixed	1.000000 Fixe	d 0.061436 Var	1.000000	ixed 3	Sele
Cu2 1.45361: Vat 1.00000 Fixed 4.101406 Vat 1.00000 Fixed 3 P1 1.17820: Vat 1.00000 Fixed 0.62656: Vat 1.00000 Fixed 3 P2 1.00000 Fixed 1.64146i Vat 1.00000 Fixed 1.00000 Fixed 3 Cu5 1.381155 Vat 1.78375 Vat 1.1 wxatoms normal end 5605 Vat 1.00000 Fixed 6 P3 1.316815 Vat 1.78375 Vat 1. OK 9472 Vat 1.00000 Fixed 6 Cu7 1.52025(Vat 1.881165 Vat 1.00000(Fixed 0.437285 Vat 1.00000(Fixed 1 Cu8 1.00000(Fixed 1.00000(Fixed 0.437285 Vat 1.00000(Fixed 1	Cu1	1.29054: Var	1.000000 Fixed	1.000000 Fixe	d 0.633522 Vat	1.00000(F	ixed ³	Sele
P1 1.178201 Mar 1.000000 Fixed 0.626561 Mar 1.000000 Fixed 3 P2 1.000000 Fixed 1.641461 Mar 1.178378 Mar 1.000000 Fixed 6665 Mar 1.000000 Fixed 3 Cu5 1.381155 Mar 1.178378 Mar 1.1 watoms normal end 5242 Mar 1.000000 Fixed 6 P3 1.316811 Mar 1.83019 Mar 1.000000 Fixed 0.051064 Mar 1.000000 Fixed 6 Cu7 1.520250 Mar 1.881162 Mar 1.000000 Fixed 0.051064 Mar 1.000000 Fixed 6 Cu8 1.000000 Fixed 1.000000 Fixed 0.437282 Mar 1.000000 Fixed 1	Cu2	1.453611 Var	1.000000 Fixed	1.000000 Fixe	d 4.101409 Var	1.00000(F	ixed ³	Sele
P2 1.000000 Fixed 1.641461 Var 1 watoms normal end Fixed 1.000000 Fixed 3 Cu5 1.381155 Var 1.178376 Var 1.1 watoms normal end 5242 Var 1.000000 Fixed 6 P3 1.316815 Var 1.830192 Var 1.1 OK 9472 Var 1.000000 Fixed 6 Cu7 1.520250 Var 1.881162 Var 1.000000 Fixed 0.437282 Var 1.000000 Fixed 1 Cu8 1.000000 Fixed 1.000000 Fixed 0.437282 Var 1.000000 Fixed 1	P1	1.178201 Var	1.000000 Fixed	1.000000 Fixe	d 0.626561 Var	1.00000(F	ixed 3	Sele
Cu5 1.381155 Var 1.178375 Var 1.1 exatoms normal end 6245 Var 1.000000 Fixed 6 P3 1.316815 Var 1.830197 Var 1.1 or P477 Var 1.000000 Fixed 6 Cu7 1.520250 Var 1.881162 Var 1.000000 Fixed 0.051066 Var 1.000000 Fixed 6 Cu8 1.000000 Fixed 1.000000 Fixed 0.437282 Var 1.000000 Fixed 1	P2	1.000000 Fixed	1.641461 Var	wxatoms norm	nal end 🔜 5609 Var	1.00000(F	ixed 3	Sele
P3 1.31681ξ Var 1.83019; Var 1. OK 447; Var 1.000000 Fixed 6 Cu7 1.52025(Var 1.88116; Var 1.000000 Fixed 0.051065 Var 1.000000 Fixed 6 Cu8 1.000000 Fixed 1.000000 Fixed 0.43728; Var 1.000000 Fixed 1	Cu5	1.381158 Var	1.178378 Var	1. wxatoms not	rmal end 5243 Var	1.00000(F	ixed 6	Sele
Cu7 1.52025(Var 1.88116: Var 1.00000(read 0.051066(Var 1.00000(Fixed 6 Cu8 1.00000(Fixed 1.00000(Fixed 0.43728' Var 1.00000(Fixed 1	P3	1.316818 Var	1.830192 Var	1.	ок 947: Var	1.00000(F	ixed 6	Sele
Cu8 1.00000(Fixed 1.00000(Fixed 1.00000(Fixed 0.43728: Var 1.00000(Fixed 1	Cu7	1.52025(Var	1.881163 Var	1.000000 Hixe	d 0.681068 Vat	1.00000(F	ixed 6	Sele
	Cu8	1.00000(Fixed	1.00000(Fixed	1.00000(Fixe	d 0.43728: Va	1.00000(F	ixed 1	Sele

Exit the program by clicking on "OK"

The next program to run is the data reduction program (greed=Graphical REduction of Electron Diffractiondata). Select from the "start-menu" Start->Elstru->Wxgreed. The following window should appear.

General Options File View Calculate Standard steps FWHM Parameters Edit Tools	
wxgreed	

To open the data-file, select "File->Open file" from the menu bar. A file-selection window should popup.

wxgreed file selection					×
😋 🕞 🗢 🚺 🕨 Computer	Local Disk (C:) Program Files (x86) Elst	tru 🕨 demo	✓ ⁴ → Search demo)	٩
Organize 🔻 New folder				!≡ ▼ 🔳	0
🔶 Favorites	Name	Date modified	Туре	Size	
🧮 Desktop	📄 30jun95_016.dat	18-5-2011 16:55	DAT File	2,049 KB	
🐌 Downloads	atom.dat	5-10-2012 17:53	DAT File	3 KB	
📃 Recent Places	📄 flat_30jun95.dat	8-6-2011 17:22	DAT File	2,049 KB	
 □ Libraries □ Documents □ Music □ Pictures □ Videos 					
A Level Diely (C)					
CD Drive (D:) Virt 🔻					_
File nan	ne: 30jun95_016.dat		✓ All files (*.*)		-
			Open	Cancel	

Select the file "c:\Program Files\Elstru\demo30jun95_016.dat" and click on "Open"

The diffraction patterns should be displayed. This image is taken using an old CCD-camera with no ant-blooming capability. The yellow areas are overexposed and contain no reliable pixel intensities.

Select "Standard Steps->All Steps" from the menu-bar. The following steps will be performed successively:

- -Determination of the position of the central beam (origin). This position is marked by a blue cross.
- -Determination of the areas which are not to be used, i.e. Due to blooming or over-saturation. These areas are marked blue.

-Correction for the different sensitivity of each pixel on the CCD-chip (Flatfield-correction) -Search for significant peaks. The are marked by red crosses

- -Indexing the peaks. This means that the 2 spanning vectors of the zone (and some correction terms are determined, The vectors are marked red and blue. Than all locations where reflections are expected are marked with pink crosses. For a successful indexing for red cross (found peak) a pink cross should be at the same position. A guess for the actual zone-orientation is given at the right-hand site of the diffraction pattern.
- -Determine the integrated indexed intensities by putting blue circles around each reflection position. The integrated intensity is the sum of the intensities of the pixels inside a circle corrected for the background using the pixels on the circles. Reflections in red circles are ignored because they contain pixels in excluded regions of the CCD.

The most important file the program created is call 30jun95_016.ii and contains the indexed integrated intensities.

By selecting "general->exit" from the top-menu you can leave the program.

The final program to test is the Least-Squares-Multi-Slice (MSLS) refinement program. To start the program select Start->Elstru->Wxmsls form the "Start-menu" The following window pops-up.

				wxmsls (on tud13129	.tudelft.net)	
General	Options	Run	Parameters			
wxmsls						

For the testing all parameters are already set to their correct values. So we can start running immediately by selecting "Run->Run MSLS" from the menu bar. An hourglass will tell you that a calculation is in progress.

				wxmsls (on tud13129	.tudelft.net)	
General	Options	Run	Parameters			
WXmsIs						

When the first R-values are calculated a graph will appear showing the current status of the R-value.

The plot is updated for each refinement cycle. When the refinement is finished a window containing the results pops-up.

Peng scattering factors Hell-File no 1 : 30(Jm95_016.i Acceleration values : 300_75271139257507	×	3 -0.31994709 0.12509348 -0.19485362	-
Wavelength : 0.019688		4 120.00104523 16.87467118 136.87571716 Based on Intensities	
Number of reflections with rcode 1: 253 Mean intensity: 4777.2172651552 Mean intensity: 4777.2172651552 Mean intensity: 4577.2172651552 wariance intensity distribution: 79697824.000000000 Number of reflections with rcode 2: 152 Mean intensity: 85.9598007202 Mean deviation form average : 86.540507495 standard deviation intensity distribution: 133.2990804433 variance intensity distribution: 2033.4379806250 Number of reflections with rcode 1:n data set 1: 253 Mean intensity: 4777.217251552 Mean intensity: 4777.2172151552 Mean intensity: 477.2172151552 Mean intensity: 4777.2172151552 Mean intensity: 477.2172151552 Mean intensity: 477.2172151552 Mea		Fréduct Roode - 1 after cycle 2: 0.06275 Fréduct Roode - 2 after cycle 2: 0.06256 - Data set no. 1 - 0.06556 - Data set no. 1 - 0.06556 - Data set no. 1 - 0.06275 R-factor Roode - 1 after cycle 2: 0.06275 R-factor Roode - 2 after cycle 2: 0.06275 R-factor Roode - 2 after cycle 2: 0.06275 R-factor Roode - 2 after cycle 2: 0.06275 R-factor all reflections after cycle 2: 0.06275 R-factor all reflections after cycle 2: 0.06915 R-factor all used reflections after cycle 2: 0.06915 R-factor all used reflections after cycle 2: 0.06915 R-factor all used reflections after cycle 2: 0.06903 -Data set no. 1 R-factor all used reflections after cycle 2: 0.06903 -Data set no. 1 R-factor all used reflections after cycle 2: 0.06903 -Data after cycle 2: 0.06903 0.06903 -Data after leflectio	
a = $12.80000 a^{+} = 0.09021$ b = $12.80000 b^{+} = 0.09021$	-	Final atomic parameters: Ce1 1.333333 1.666667 1.000000 0.061885 0.166667	
EXIT		EXIT	

Check now that the values for the crystal thickness, Centre of Lau-circle and scalefactor are close to the values displayed in the sample window below.

upper difference 1 Times printed by StopWatch: refinement clock: cpu = 8.29 user = 8.23 sys = 0.06 wall = 9.20 Atomic set no. 1 Final atomic parameters: Ce1 1.333333 1.666667 1.000000 0.061885 0.166667 Ce2 1.814083 1.000000 1.000000 0.633522 0.250000 Cu1 1.290545 1.000000 1.000000 0.633522 0.250000 Cu2 1.453613 1.000000 1.000000 0.65252 0.250000 P1 1.178202 1.000000 1.000000 0.985610 0.250000 Cu3 1.381159 1.178378 1.000000 0.949476 0.500000 Cu3 1.316181 1.830133 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Cu38 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Overall 8: 0.000000 Overall bis 0.000000 Verall bis 0.000000 Overall bis 0.000000				Result	ts (on tud131	29.tudelft.net)		-]
Innes printed by StopWatch: refinement clock: cpu= 8.29 user= 8.23 sys= 0.06 wall= 9.20 Atomic set no. 1 Final atomic parameters: Cel 1.33333 1.666667 1.000000 0.061885 0.166667 Ce2 1.814083 1.000000 1.000000 0.61852 0.250000 Cu2 1.453613 1.000000 1.000000 0.626562 0.250000 P1 1.178202 1.000000 1.000000 0.945610 0.250000 Cu5 1.381158 1.83013 1.000000 0.94976 0.500000 Cu7 1.520251 1.881163 1.000000 0.437285 0.083333 Flack Absolute structure parameter: 0.00000 Witten to: atom.dat Overall 8: 0.000000 Overall absorbtion factor: 0.000000 Data set no.: 1 thickness: 137.(3) centre of laue circle: h: 0.98(8) (Default = ***********************************	opu cii Ti	ne in cycle - 2	·						•
remement cock: cpu = 8.29 user = 8.23 sys = 0.06 wall = 9.20 Atomic set no. 1 Final atomic parameters: Ce1 1.333333 1.666667 1.000000 0.061885 0.166667 Ce2 1.814083 1.000000 1.000000 0.631522 0.250000 Cu2 1.453613 1.000000 1.000000 0.626562 0.250000 Cu2 1.453613 1.000000 1.000000 0.985510 0.250000 P2 1.000000 1.541461 1.000000 0.949476 0.500000 Cu5 1.381159 1.178378 1.000000 0.949476 0.500000 Cu3 1.300000 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter: 0.000000 Overall b: 0.000000 Dutate set no. 1 thickness: 137.(3) centre of law circle: h: -0.98(8) (Default = ***********************************	Times	s printed by Sto	pwatch:						
cpub 8.29 User 8.23 sys 0.00 Wall 9.20 Atomic set no. 1 Final atomic parameters: 621 1.333333 1.666667 1.000000 0.061885 0.166667 C22 1.814083 1.000000 1.000000 0.63522 0.250000 Cull 1.29545 1.000000 0.63522 0.250000 Cull 1.29545 1.000000 0.626562 0.250000 Cull 1.29545 1.000000 0.958510 0.250000 Cull 1.381153 1.000000 0.958510 0.500000 Cutl 1.520251 1.881163 1.000000 0.949476 0.500000 Cutl 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter: 0.000000 Written to : atom.dat 0.000000 0.000000 0.083333 Flack Absolute structure parameter: 0.000000 Overall absorbtion factor: 0.000000 0.00000 0.083333 Flack Absolute structure parameter: 0.000000 No 0.000000 0.000000 0.00000 0.00000 0.00000 0.000000 0.00000 <t< td=""><td>refine</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	refine								
Atomic set no. 1 Final atomic parameters: Cel 1.333333 1.666667 Ce2 1.814083 1.000000 1.000000 0.061885 0.166667 Ce2 1.814083 1.000000 1.000000 0.633522 0.250000 Cu1 1.220545 1.000000 1.000000 0.626562 0.250000 P1 1.178202 1.000000 1.000000 0.626562 0.250000 Cu5 1.381159 1.178378 1.000000 0.959510 0.250000 Cu7 1.520251 1.881163 1.000000 0.949476 0.500000 Cu3 1.316818 1.830193 1.000000 0.641688 0.500000 Cu3 1.350000 1.00000 1.000000 0.641688 0.500000 Cu3 1.300000 1.00000 0.0437285 0.083333 Flack Absolute structure parameter : 0.000000 Wortlet no : atom.dat Overall absorbtion factor : 0.000000 Dverall absorbtion factor : 0.000000 for twin matrix : 100000 0.00000 0.00000 0.00000 0.00000 1.00000 for twin matrix : 100000 0.00000 0.00000 1.00000 1.00000 MEXIT EXIT	c	:pu= 8.29 us	er= 8.23 s	ys= 0.06 wa	all= 9.20				
Actine Set No. 1 Final atomic parameters: Cel 1.333333 1.666667 1.000000 0.061885 0.166667 Cel 1.814083 1.000000 1.000000 0.663352 0.250000 Cul 1.290545 1.000000 1.000000 4.101410 0.2500000 P2 1.000000 1.641461 1.000000 0.5826510 0.250000 CuS 1.381159 1.178378 1.000000 0.786243 0.500000 CuS 1.3811581 1.831153 1.000000 0.681968 0.500000 CuB 1.000000 1.000000 0.6949476 0.500000 CuB 1.000000 1.000000 0.6949476 0.500000 CuFall 8.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Overall 8.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Overall absorbtion factor : 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.96(8) (Default = ***********************************	Atomi	ic cot po 1							
India doine parameter 3. Cel 1.333333 1.666667 1.000000 0.061885 0.166667 Ce2 1.814083 1.000000 1.000000 0.63452 0.250000 Cu2 1.453613 1.000000 1.000000 0.626562 0.250000 P1 1.178202 1.000000 1.641461 1.000000 0.796243 0.500000 Cu5 1.381159 1.178378 1.000000 0.796243 0.500000 Cu7 1.520251 1.881163 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Current of laue circle : h: -0.0981(8) (Default = ***********************************	Final	atomic parame	tere						
Cc2 1.814083 1.00000 1.00000 0.051437 0.250000 Cu1 1.290545 1.000000 1.000000 0.633522 0.250000 P1 1.178202 1.000000 1.000000 0.626562 0.250000 P2 1.000000 1.641461 1.000000 0.995510 0.250000 Cu5 1.381159 1.178378 1.000000 0.996243 0.500000 Cu7 1.520251 1.881163 1.000000 0.949476 0.500000 Cu8 1.00000 1.00000 1.00000 0.64168 0.500000 Written to : atom.dat Overall B: 0.00000 0.00000 Overall absorbtion factor : 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h: 0.098(8) (Default = ***********************************	Ce1	1 333333	1 666667	1 000000	0.061885	0 166667			
Ca2 1.01+03 Cu1 1.290545 1.000000 1.000000 0.53152 0.250000 Cu2 1.453613 1.000000 1.000000 0.431522 0.250000 P2 1.000000 1.641461 1.000000 0.985610 0.250000 Cu5 1.381159 1.78378 1.000000 0.796243 0.500000 Cu7 1.520251 1.881163 1.000000 0.681068 0.500000 Cu8 1.000000 1.000000 0.6949476 0.500000 Cu8 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 written to : atom.dat Cverail B: 0.00000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.98(8) (Default = **********) k: 0.00000 (Default = ***********************************	Ca2	1 91/093	1.000000	1.000000	0.061437	0.250000			
Cu2 1.453613 1.000000 1.000000 4.101410 0.250000 P1 1.178202 1.000000 1.000000 0.626562 0.250000 P2 1.000000 1.641461 1.000000 0.985610 0.250000 Cu5 1.381159 1.178378 1.000000 0.796243 0.500000 Cu3 1.3102051 1.881163 1.000000 0.681068 0.500000 Cu8 1.000000 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Wortal b: 0.000000 Coveral b: 0.00000 Coveral b: 0.000000 Coveral b: 0.00000 Coveral b: 0.0000 Coveral b: 0.0000 Coveral b: 0.0000 Coveral b: 0.0000	0.1	1 290545	1.000000	1.000000	0.633522	0.250000			
P1 1.178202 1.000000 1.000000 0.626562 0.250000 P2 1.000000 1.641461 1.000000 0.985510 0.250000 P3 1.316818 1.830193 1.000000 0.949476 0.500000 Cu7 1.520251 1.881163 1.000000 0.681068 0.500000 Cu8 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Wortlat to : atom.dat Overall & 0.00000 Overall absorbtion factor : 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.98(8) (Default = ***********************************	012	1 453613	1.000000	1.000000	4 101410	0.250000			
1.11 1.000000 1.641461 1.000000 0.995510 0.250000 Gu5 1.381159 1.000000 0.796243 0.500000 Gu7 1.520251 1.881163 1.000000 0.494476 0.500000 Gu7 1.520251 1.881163 1.000000 0.494476 0.500000 Gu7 1.520251 1.881163 1.000000 0.437285 0.083333 Flack Absolute structure parameter: 0.00000 0.437285 0.083333 Flack Absolute structure parameter: 0.00000 Verail B: 0.00000 Overail B: 0.000000 Overail B: 0.000000 Detata set no.: 1 thickness: 137.(3) centre of laue circle: + - - h: - 0.9818) (Default = ***********************************	P1	1 178202	1 000000	1 000000	0.626562	0.250000			
Cu5 1.381159 1.178378 1.00000 0.796243 0.500000 P3 1.316818 1.830193 1.000000 0.4949476 0.500000 Cu7 1.520251 1.881163 1.000000 0.681068 0.500000 Cu8 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 Overall B: 0.000000 Overall absorbtion factor : 0.000000 Data set no: 1 thickness : 137.(3) centre of laue circle : h: -0.98(8) (Default = ***********************************	P2	1 000000	1.641461	1.000000	0.985610	0.250000			
P3 1.316818 1.830193 1.000000 0.949476 0.500000 Cu7 1.520251 1.881163 1.000000 0.681068 0.500000 Cu8 1.000000 1.000000 0.437285 0.083333 Flack Absolute structure parameter : 0.000000 written to : atom.dat Overall 8b: 0.000000 Overall absorbtion factor : 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.98(8) (Default = ***********************************	015	1.381159	1,178378	1.000000	0.796243	0.500000			
Cu7 1.520251 1.881163 1.00000 0.681068 0.500000 Cu8 1.000000 1.00000 0.437285 0.083333 Flack Absolute structure parameter: 0.000000 written to : atom.dat Overall 8: 0.00000 Overall absorbtion factor: 0.000000 Data set no.: 1 thickness: 137.(3) centre of laue circle: h: -0.98(8) (Default = ***********************************	P3	1.316818	1.830193	1.000000	0.949476	0.500000			
CuB 1.000000 1.000000 0.0437285 0.083333 Flack Absolute structure parameter : 0.000000 Wverall B : 0.000000 Overall absorbtion factor : 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.98(8) (Default = ***********************************	Qu7	1.520251	1.881163	1.000000	0.681068	0.500000			
Flack Absolute structure parameter : 0.000000 written to : atom.dat Overall 8: 0.000000 Data set no. : 1 thickness : 137.(3) centre of laue circle : h : -0.98(8) (Default = ***********************************	Cu8	1.000000	1.000000	1.000000	0.437285	0.083333			
written to : atom.dat Overall B : 0.000000 Data set no. : 1 thickness : 137.(3) centre of law circle : h: -0.98(8) (Default = *****************) k: 0.79(11) (Default = *******************) 1: 0.000000 (Default = ************************) twin parameter 0.000000 for twin matrix : 1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)	Elack	Absolute struct	ture paramete	r · 0.000000					
Overall B: 0.00000 Overall absorbtion factor: 0.00000 Data set no: 1 thickness: 137.(3) centre of laue circle: h: -0.98(8) (Default = ***********************************	writte	en to : atom.da	at						
Overail absorbtion factor: 0.000000 Date set no.: 1 thickness: 137.(3) centre of laue circle:	Overa	II B 0 00000	10						
Data set no. : 1 thickness : 137.(3) centre of laue circle : h: -0.98(8) (Default = *************) l: 0.00000 (Default = **************) twin parameter 0.000000 for twin matrix : 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)	Over	rall absorbtion t	factor: 0.00	0000					
thickness: 137.(3) centre of laue circle: h: -0.98(8) (Default = ***********************************	Data	set no. : 1							
centre of laue circle : h: -0.98(8) (Default = ***********************************	thic	kness: 13	87.(3)						
h: -0.98(8) (Default = *****************) k: 0.79(11) (Default = *************) 1: 0.000000 (Default = ************) twin parameter 0.000000 for twin matrix: 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 absorbtion factor: 0.000045 scalefactor: 1.18(2)	cen	tre of laue circl	e:						
k: 0.79(11) (Default = ***********************************	h:	-0.98(8)(Default = ****	soloioloioloioloiolo					
I: 0.000000 (Default = ***********************************	k :	0.79(11) (Default = ****	ososososososos ,					
twin parameter 0.000000 for twin matrix : 1.00000 0.00000 0.00000 0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)	1.1	0.000000 (De	efault = *******	okokokokokoko (
for twin matrix : 1.00000 0.00000 0.00000 0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)	twin	parameter 0	.000000	· · ·					
0.00000 1.00000 0.00000 0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)	for	twin matrix :	1.00000 0	.00000 0.00	0000				
0.00000 0.00000 1.00000 absorbtion factor : 0.000045 scalefactor : 1.18(2)		0.0	0000 1.000	00 0.00000					
absorbtion factor : 0.000045 scalefactor : 1.18(2)		0.0	0000 0.000	00 1.00000					
scalefactor : 1.18(2)	abso	orbtion factor :	0.000045						
EXIT	scale	efactor: 1	.18(2)						
EXIT								[Y
EXIT									
EXIT							-		
EXIT									
						EXIT			

Close the window by pressing the "EXIT" button. Check now that the R-value graph is similar to the one displayed here.

Close the program by selecting "general->exit" from the menu bar.

If everything did run correctly, I can congratulate you with a working version of ELSTRU.

3. Obtain a license

Without a license the programs operate in Demo-mode with a lot of options disabled. This chapter describes how to obtain a license.

Contact Jouk Jansen (joukj@hrem.nano.tudelft.nl) for the license conditions. Once you have a agreed on the license conditions you will be provided with a username/password which is coupled to your E-mail address.

Once you got the username/password you can generate your machine-dependent license file, nodelock, in the following way. Note that this procedure can only used if the computer is connected to the internet and if your fire-wall accepts out-going traffic. If you are not able to run this procedure contact Jouk Jansen (joukj@hrem.nano.tudelft.nl), who will help you with a *manual* generation/installation of the license.

Set the Windows-file-explorer to c:\Program Files\Elstru\license:

Run the program GETLICENSE by 'double-clicking on it. A window in which you can fill in your username/password will appear:

The program now send all the needed information to Delft (see the licinfo.txt file to see what is actually sent). Within a working day an E-mail should be returned containing a nodelock file. This file can be placed in one of the following locations and should be renamed to nodelock

c:\Program Files\elstru\ (For an installation of all users on the machine (32bit windows)) c:\Program Files (x86)\elstru\ (For an installation of all users on the machine (64bit windows))

c:\Documents and Settings \<username>\ (=the home directory of the user using ELSTRU)

Once yo have done this all the programs of the ELSTRU package should be functioning with all the available options.

4. asking questions and making remarks

The ELSTRU software and documentation improves by your comments. So, do not hesitate to ask what is not clear and make comments on what you (dis)like about the software and the documentation. Please, send your questions and remarks to Jouk Jansen (joukj@hrem.nano.tudelft.nl).